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Abstract Paths of the Kolbe–Schmitt reaction were

investigated by the use of RB3LYP/6-311(?)G(d,p) density

functional theory calculations. In a monomer model com-

posed of C6H5O-, Na? and CO2 affording sodium salicylate

[C6H4(OH)CO2
-Na?], a proton-shift step (Z Naturforsch

57a:812, 2002) was found to have an unrealistically large

activation energy. In consideration of the phenol volatiliza-

tion in the Kolbe’s experiment and the need of the linearity of

the proton-transfer path, a dimer model was constructed.

Again, a mutual proton-transfer step has a large activation

energy. Alternatively, in a dimer model, a transfer path

where the phenoxide ion in one monomer acts as a proton

acceptor was found to have a reasonable energy. Addition of

one more sodium ion leads to the significant lowering of

activation energies. Thus, in the dimer, two monomers

behave differently (A ? A ? A ? B); one is as if it were a

catalyst.

Keywords Kolbe–Schmitt reaction � Density functional

theory calculations � Dimer model � Proton transfer �
Sodium salicylate

1 Introduction

The Kolbe–Schmitt reaction is defined in Scheme 1 [1]. In

1860, Hermann Kolbe found that the sodium phenoxide

salt reacts with CO2 at the standard pressure (P = 1 atm)

and high temperatures (100–250 �C) to afford sodium

salicylate [2]. The salicylate was dissolved in water and the

salicylic acid (o-hydroxybenzoic acid) precipitated on

acidification by H2SO4.

In 1874, he proposed an improved procedure for the

preparation of the salicylic acid, which is shown in

Scheme 2 [3]. The PhO-Na? salt was prepared by eva-

porating an aqueous solution of equimolar amounts of

PhOH and NaOH to dryness. The dried salt was heated to

180 �C, and CO2 was allowed to pass slowly over it. The

temperature was raised to 220–250 �C, and the reaction

was terminated, when no more phenol distilled. Owing to

the volatilization of the phenol, the yield of the salicylic

acid could not exceed 50%.

In 1885, Rudolf Schmitt found that the condition

of high temperatures (100–130 �C) and high pressures

(80–94 atm) gave an excellent yield (94–97%) of the

salicylic acid [4]. For example, at T = 100 �C, the yield is

94% along with two by-products, p-hydroxybenzoic acid

(4%) and 4-hydroxyisophthalic acid (2%). The high pres-

sure is thought to suppress the loss of phenol by the

volatilization.

In the ortho–para orientation of electrophilic aromatic

substitutions, usually the para product is major and the

ortho one is minor. The above ratio (ortho 94% to para

4%) suggests that the cation-coordinated addition–elimi-

nation takes place preferentially at the ortho position. A

mild condition (T = 25 �C and P = 64.5 atm) for the

Kolbe–Schmitt reaction was examined [5]. The yields were

32.30% (ortho, main product) and 4.60% (para) along with
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that of phenol. Thus, formation of the para-hydroxyben-

zoic acid occurs simultaneously.

Many studies have been made to determine the reaction

mechanism of this classic reaction [4–13]. Two NaOPh-

CO2 intermediates with m (CO2, asymm) = 1,685 cm-1

and m (CO2, asymm) = 1,680, 1,651 cm-1 are thought to

be involved in it [7]. A mechanism based on the pre-

liminary association of PhO-Na? with CO2 to form a

complex and an intramolecular displacement of the ortho
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Scheme 2 Kolbe’s experiment made in 1874 [3]. The drying

procedure is necessary, because strong chelation of water molecules

with sodium phenoxide prevents the initial electrophilic addition of
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Scheme 3 A reaction path obtained by RB3LYP/LAN2DZ calcula-

tions [10]. ‘‘o-ts1’’ means the first transition state of the CO2 ortho
addition, which follows the Dewar’s model [9]
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Scheme 5 a A mutual proton shift for the isomerization, D ? E.

Species D and E are defined in Scheme 3. b The Claisen shift of allyl

phenyl ether to ortho-allyl phenol [17]

OH NaOH

CO2

OH
CO2Na

H2SO4 OH
CO2H

phenol sodium salicylate salicylic acid

Scheme 1 The Kolbe–Schmitt reaction

892 Theor Chem Acc (2011) 130:891–900

123



hydrogen by electrophilic attack was suggested [8]. Dewar

proposed a reaction model shown in Scheme 3 [9]. A DFT

calculation was made, following the model [10].

In the scheme, species A is composed of free PhONa

and CO2 molecules. In species B, they are bound with each

other. In the (B ? C) step, i.e., o-ts1, CO2 is added to the

ortho position of the phenoxide ring. In (C ? D), ts2, the

sodium ion is shifted to only the carboxylate group. In

(D ? E), ts3, the ortho proton is shifted to the oxygen.

Although the calculated process is straightforward, the

activation energy (?45.67 kcal/mol relative to the energy

of species D, ?65.69 kcal/mol relative to that of A) of ts3

is too large for the reaction to occur. By nature, the [1, 3] H

rearrangement is ‘‘symmetry forbidden’’ according to the

Woodward–Hoffmann (W–H) rules [14, 15] and is

improbable. In addition, formation of phenol (which

should be involved in the reaction path) cannot be

explained by the unimolecular model in Scheme 3. In fact,

a bimolecular model, C6H4(OH)COOK ? C6H5OK ?
C6H4(OK)COOK ? C6H5OH, was suggested for the for-

mation (Scheme 4) [16].

The isomerization step, ts3 (D ? E) in Scheme 3,

appears to be critical to consider the mechanism. The

species D is a trienone and would be stable. The driving

force of the isomerization, i.e., of hydrogen transfer from

Ca to ketone O, keto-enol tautomerization of the species D,

is thought to be the aromatization of the ring. A candidate

of the isomerization is shown in Scheme 5a. Intermolecular

and simultaneous proton shifts, (D ? D) ? (E ? E),

might give an activation energy smaller than that of ts3. In

our previous work, a double-proton transfer of Scheme 5b

was found to be of a much smaller energy than that of the

intramolecular and direct [1, 3] H-shift in the second step

of the Claisen rearrangement [17].

In this work, the mechanism was investigated compu-

tationally by the use of a dimer model, (PhONa ? CO2)2.

The deprotonation of the trienone (D) and formation of

phenol were scrutinized carefully.

2 Method of calculations

The geometries were determined by density functional the-

ory calculations at the RB3LYP/6-311(?)G(d,p) [18–20],

where diffuse orbitals ‘‘(?)’’ are added to the oxygen

6-311G(d,p) basis set. For a large system, (PhONa-

CO2)2 ? Na? ? (CO2)6, RB3LYP/6-31G(d) calculations

were made (Fig. 7). Key transition state geometries were

examined with B3PW91 calculations [20–23]. The obtained

data are shown in parentheses in Figs. 2, 3, 4 and 5. B3PW91,
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Symmetry in precursor and Int2-o has been broken in Int3-o. That

is, one CO2 adduct has been dissociated. Geometries of precursor-o,

TS1-o and Int1-o are shown in Fig. 2. Those of TS2-o, Int2-o, TS3-

o and Int3-o are in Fig. S2 (Supplementary material)
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M05 [24], M06 [25, 26] and PBE1KCIS [27] with the 6-

311(?)G(d,p) basis set were carried out on the precursor (B)

and the proton shift TS (ts3) in Fig. S1 (Supporting Infor-

mation). RB3LYP/aug-cc-pVDZ [28, 29] calculations were

also made on B and ts3. TSs were characterized by vibra-

tional analysis, by which we examined whether the Hessian

matrices obtained from TS geometries had single imaginary

frequencies (m�). From the TSs, reaction paths were followed

using the IRC (intrinsic reaction coordinate) method [30, 31]

to obtain the minimum-energy geometries. Relative Gibbs

free energies were calculated by thermal correction

(T = 298.15 K, P = 1 atm) energies. The natural popula-

tion analysis of NBO [32] was carried out for C in Fig. S1 and

TS1-o in Fig. 2. All calculations were carried out using the

GAUSSIAN 03 [33] program package installed at Research

Center for Computational Science, Okazaki, Japan.

3 Results and discussions

3.1 Dimer model, (PhO-Na?CO2)2

The Dewar’s unimolecular model (Scheme 3) was inves-

tigated first. The calculated results are shown in Fig. S1

(Supplementary material). The activation free energy of ts3

(DG� = 65.69 kcal/mol relative to the energy of B) is

shown to be significant. Second, a dimer model was

investigated. At the top of Scheme 6, a symmetric (point

group i) geometry was shown as ‘‘precursor-o’’. Each

sodium ion is linked weakly with the phenoxide oxygen, p
electronic cloud in the g6 coordination and one oxygen

atom of CO2. One CO2 molecule adds to the ortho position

electrophilically at TS1-o. Here, TS1-o means the first

transition state for the ortho addition. The trienone-
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Fig. 2 Alternative unsymmetrical route and the geometries of a

dimer model (PhONa ? CO2)2, which leads to the sodium salicylate.

Numerical data shown on the precursor and the key transition state

geometries without parentheses are of B3LYP/6-311(?)G(d,p) and
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containing intermediate, Int1-o, results. After Int1-o, the

second electrophilic CO2 attack occurs at TS2-o. A sym-

metric structure involving the trienone dimer is reached

(Int2-o). From Int2-o, proton shifts illustrated in Sche-

me 5a were expected. However, the mutual proton-shift

path could not be obtained. Alternatively, a TS geometry

with one-proton shift (TS3-o) was found. TS3-o involves

the CO2 dissociation as well as the proton shift. The

resultant intermediate, Int3-o, consists of phenol, CO2 and

disodium salicylate (C6H4ONaCO2Na). Thus, two (PhO-

NaCO2) units were found to behave in a way (Scheme 6)

different from that predicted in Scheme 5a.

Energy changes corresponding to Scheme 6 are shown

in Fig. 1a. The energy of TS3-o is significantly large

(DG� = 55.25 kcal/mol), and the route in Scheme 6 is

obviously unfavorable energetically. Another route involv-

ing the different behavior of the two units (PhO-Na?CO2)2

needed to be investigated. Even in this new route, steps of

precursor-o ? TS1-o ? Int1-o are included, because one

CO2 adduct is required for the reaction to progress.

Figure 2 shows one possible new path. Precursor-o

consists of complexes (PhO-Na?CO2)2. The electro-

philic addition of CO2 to PhO- occurs at TS1-o, which leads

to Int1-o. In Int1-o, the proton H(8) in the trienone might be

quenched by the phenoxide ion. Indeed, the proton move-

ment was obtained as TS4-o. Subsequently, a disodium

salicylate intermediate, Int4-o, was arrived at, which is quite

similar to Int3-o; however, one point is crucially different
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between Int3-o and Int4-o. In the latter, a strong hydrogen

bond, O12—-H8-O17, is formed. The formation is critical for

the proton transfer, and in fact TS5-o was obtained. The

product, sodium salicylate, was reached after TS5-o. Geo-

metric changes along the route, precursor-o ? Int1-

o ? Int4-o ? product-o, in Fig. 2 are spontaneous and

appear to be likely. Energy changes along the route in Fig. 2

are shown in Fig. 1b. The rate-determining step was found to

be TS4-o, which is the deprotonation step of the trienone

intermediate. The isomerization, Int4-o ? product-o is very

likely with the energy difference between Int4-o and product-

o (=3.30 kcal/mol). If the difference was large, the unit

(PhO-, Na? and CO2) would undergo the second Kolbe–

Schmitt reaction. The small energy difference indicates that

the phenol may volatilize and go away (in Scheme 2) from

Int4-o according to the Le Chatelier principle for the con-

centration in the equilibrium between Int4-o and product-o.

The calculated harmonic vibrational modes at approxi-

mately 1,600 cm-1 and their corresponding IR absorption

intensities (Inten) of more than 100 KM/mole are given

below.

For Int1-o,

m (the 76th) = 1,633 cm-1 with Inten = 164,

m (the 77th) = 1,642 cm-1 with Inten = 234,

m (the 78th) = 1,668 cm-1 with Inten = 430,

m (the 79th) = 1,695 cm-1 with Inten = 302.

For Int4-o,

m (the 76th) = 1,589 cm-1 with Inten = 167,

m (the 77th) = 1,629 cm-1 with Inten = 253.

For the former intermediate, m (the 78th) has a remark-

ably large Inten(=430) and should have an intense peak in

the IR spectra. On the other hand, for the latter, two peaks
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Fig. 4 Geometric changes in the (PhO-Na?CO2)2 ? Na? model for the ortho channel
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would be distinguishable, although the m (the 76th) =

1,589 cm-1 is somewhat smaller than the experimental

value [7].

The path to the para-hydroxybenzoic acid was sought,

and geometric changes are shown in Fig. 3. Similar steps to

those in Fig. 2, precursor-p ? TS1-p ? Int1-p ? TS4-

p ? Int4-p ? TS5-p ? product-p, were obtained. Chan-

ges of Gibbs free energies are shown in Fig. 1. TS4-p has

a significantly large energy, DG� = 46.10 kcal/mol.

Also, product-p is remarkably unstable, DG� = ?24.45
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kcal/mol. The para-CO2 addition route in Fig. 3 is, thus,

improbable. The calculated result is inconsistent with the

experimental one, the minor but detectable yield (4%) of

the para-hydroxybenzoic acid [5].

3.2 Dimer model, (PhO-Na?CO2)2, catalyzed

by a Na? ion

In the previous sub-section, TS4-o and TS4-p (deprotona-

tions from the CO2 adducts) have been found to be rate-

determining steps for ortho and para channels. Usually,

the electrophilic addition is the rate-determining step

(e.g., in benzene ? NO2
? ? adduct ? nitrobenzene ?

H?). Along with the unreasonably large DG� value of

TS4-p, the dimer model alone seems not to describe

properly the Kolbe–Schmitt reaction. At TS4, there are

three anionic oxygens, which need to be stabilized by the

counter ion Na?. Then, three sodium ions are required for

the stabilization (Scheme 7).

A (PhO-Na?CO2)2 ? Na? model was adopted, and the

ortho and para channels were investigated. Figs. 4 and 5

show geometric changes of the ortho and para channels,

respectively. In the first geometry in Fig. 4 (precursor-o’),

two sodium ions are bound to two PhO- oxygen atoms and

one ion is sandwiched by two PhO- planes. Hereafter, the

prime in e.g., precursor-o’ shows the (Na?)3 containing

geometry. The ortho-channel process, precursor-o’ ?
TS1-o’ ? Int1-o’ ? TS4-o’ ? Int4-o’ ? TS5-o’ ? pro-

duct-o’, is shown in Fig. 4. Similarly, the para-channel

process, precursor-p’ ? TS1-p’ ? Int1-p’ ? TS4-p’ ?
Int4-p’ ? TS5-p’ ? product-p’, is shown in Fig. 5. In

both channels, always at least one sodium ion is coordi-

nated to the phenyl p cloud. The g6 coordination seems to

stabilize reacting systems.

Changes of Gibbs free energies in the (PhO-Na?-

CO2)2 ? Na? are shown in Fig. 6. First, energies of the

ortho channel were compared to those in Fig. 1. DG�

(TS1-o’) = ?26.65 kcal/mol is similar to DG�(TS1-o) =

?25.94 kcal/mol. On the other hand, DG�(TS4-o’) =

?25.85 kcal/mol is much smaller than DG�(TS4-o) =

?35.67 kcal/mol. The third Na? ion promotes the proton

shift in TS4-o effectively. In addition, the third ion gives

stabilization, DG�(product-o’) = -7.60 kcal/mol com-

pared to DG�(product-o) = ?6.04 kcal/mol.

The effect of the third Na? ion on the para channel

is drastically larger than that on the ortho one. DG�

(TS1-p’) = ?28.39 kcal/mol is smaller than DG�
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Fig. 6 Changes of Gibbs free energies of the (PhO-Na?-
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(TS1-p) = ?33.06 kcal/mol. More strikingly, DG�(TS4-

p’) = ?22.35 kcal/mol is almost half of DG�(TS4-p) =

?46.10 kcal/mol! DG�(product-p’) = ?6.06 kcal/mol is

much smaller than DG�(product-p) = ?24.45 kcal/mol.

Therefore, when the third Na? ion is added to the

(PhO-Na?CO2)2 systems, the para reactivity becomes

close to the ortho one. Participation of the catalytic third

ion to the dimer system has been found to enhance ortho

and para products, which seems to be consistent with the

result of the room temperature experiment [5]. While

aggregation of counter ions is of low probability, its

attainment gives a high reactivity of the Kolbe–Schmitt

reaction.

In accordance with the CO2 high pressure experiments

[4, 5], a model composed of (PhO-Na?CO2)2 ?

Na? ? (CO2)6 was considered. Since the system is large,

B3LYP/6-31G(d) calculations were made on the three

geometries corresponding to those of precursor-o’, TS1-o’

and TS4-o’ of Fig. 4. The model calculation is needed,

because the value of DG� (TS1-o’) = ?26.65 kcal/mol is

similar to that of DG� (TS4-o’) = ?25.85 kcal/mol

(Fig. 6) and the rate-determining step is unclear. Figure 7

shows results of the two TSs. DG� (TS1-o’(ext)) =

?7.52 kcal/mol is much smaller than DG� (TS4-o’(ext)) =

?21.91 kcal/mol. The CO2 electronic addition was found

to undergo the catalytic effect of the CO2 solvation

significantly.

4 Concluding remarks

In this study, the Kolbe–Schmitt reaction has been exam-

ined computationally. The Dewar’s unimolecular model

has been computed to be unlikely because of the signifi-

cantly large activation energy for the [1, 3] hydrogen shift.

A dimer model has been adopted. A path conserving the

geometric symmetry has been assumed first. However, the

path has a large energy for the proton shift (TS3-o), and

one CO2 adduct, i.e., trienone is decomposed to PhO- and

CO2. Second, an unsymmetrical model has been investi-

gated and a reasonable activation energy (=35.67 kcal/mol

at TS4-o) has been obtained. A phenol intermediate is

formed as a result of the proton acceptance from the trie-

none intermediate. The proton is shifted to the di-anion
-OC6H4-CO2

- to form the product, sodium salicylate.

Addition of the Na? ion to the (PhO-Na?CO2) system

gives rise to ready formation of sodium salicylate and

sodium para-hydroxybenzoate.

The two units, (CO2 ? Na? ? C6H5O-), have been

computed to behave differently; one of them acts as a cata-

lyst. The present reaction pattern, A ? A ? A ? B shown

in Scheme 8, seems to be a quite unique propagation.
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